Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Engineering for Gas Turbines and Power
Article . 2022 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Optimization of Semi-Closed Oxy-Combustion Combined Cycle for Current and Future Blade Materials

Authors: Risimini, GP; Martinelli, M; Chiesa, P; Martelli, E;

Performance Optimization of Semi-Closed Oxy-Combustion Combined Cycle for Current and Future Blade Materials

Abstract

Abstract Among the technologies for carbon capture and storage (CCS) from natural gas, oxy-turbine plants are a very promising solution thanks to the high efficiency, absence of stack, and nearly 100% capture rate. This paper investigates the efficiency which can be achieved by the semi-closed oxy-combustion combined cycle (SCOC-CC) with state-of-the-art and future blade materials. In particular, the analysis considers class-H turbine superalloys with a maximum blade wall temperature of 900 °C and ceramic matrix composites with blade wall temperatures of 1300 °C. Sensitivity analyses are performed to determine the optimal pressure ratio and turbine inlet temperature. The results indicate that state-of-the-art superalloys allow the SCOC-CC to achieve 54% net electric efficiency with a 96% carbon capture rate, while ceramic matrix composite (CMC) blades boost the efficiency up to 60%. For both cases, critical factors are the high temperature gradients across the blade coatings (thermal barrier coating (TBC) for superalloy, environmental barrier coating (EBC) for CMC) and the blade thickness caused by the large heat flux exchanged between hot gases and cooling flows.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average