Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Heat Tran...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Heat Transfer
Article . 2024 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experiments on Gasketed Plate Heat Exchangers With Segmented Corrugation Pattern

Authors: Matheus Strobel; Leonel E. Beckedorff; Giovani S. M. Martins; Jorge L. G. Oliveira; Kleber V. Paiva;

Experiments on Gasketed Plate Heat Exchangers With Segmented Corrugation Pattern

Abstract

Abstract Gasket plate heat exchanger (GPHE) is among the most used heat exchanger types, known for its high effectiveness and compact design. Its remarkable feature is the corrugated plate geometry, typically a Chevron pattern. This work aims to analyze another corrugation pattern, which has segments with different angles to the vertical. The strengths and weaknesses of the segmented plate are still unclear, as the studies on this pattern are scarce. To fill this gap, we experimentally assess the pressure drop and heat transfer in a GPHE composed of 31 segmented plates. The plates have four quadrants, and the combination of low-angle and high-angle plates can form up to six channel types. Pressure and temperature data are acquired in 144 sets of experiments. In the pressure drop results, we observe a considerable discrepancy between the two streams, which leads to a discussion of a relevant phenomenon: the elastic deformation of the plates. If the inner pressure of the streams is not equal, the pressure gradient causes the plates to deform and change the channel geometry. The stream with the higher pressure has its channels expanded, while the lower pressure channels will be strangled. This phenomenon is rarely reported in the literature and strongly affects the pressure drop. Moreover, we present friction factor correlations for six channel types using flow data. Based on the generalized Lévêque analogy in the heat transfer experiments, we argue that the plates' deformation also affects the heat transfer.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average