
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Thermally Integrated CO2-Carnot Battery (TI-PTES) Utilizing Cold Thermal Storage

doi: 10.1115/1.4066353
Abstract The growing integration of renewable energy sources in the energy grid presents intermittency and negative pricing challenges, necessitating large-scale energy storage solutions. Pumped thermal energy storage (PTES) can address these issues by storing and delivering substantial energy whenever required. High-temperature heat pump development is crucial to deploying PTES for storing heat at sink temperatures that are well above the ambient temperature(>450 °C) to ensure a reasonable round-trip efficiency (RTE). Currently, however, it is not a technological possibility for heat pumps to achieve these temperatures even with the support of freely available heat (200 °C to 400 °C) as source temperatures. This study explores a potential layout of the TI-PTES system that exploits commercially available equipment by storing heat below the ambient temperature while still being able to utilize the freely available heat source (Solar, Waste heat, biomass, etc.) to support the overall RTE. The charging phase employs a well-established CO2-refrigeration cycle to accumulate energy below the ambient temperature in cold thermal storage. While the discharging phase runs a trans-critical CO2 power cycle between the freely available heat source and the cold thermal storage. Overall, offering a practically implementable model for the PTES system with market-available components. The study investigates the design of this innovative system presenting the relevance of different operating and machine parameters as well as the contribution of freely available heat sources to the overall performance. Finally, benchmarking the technology with other long-duration energy storages.
- University of Genoa Italy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
