Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Conference object . 2009
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2009
https://doi.org/10.1115/es2009...
Conference object . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of a Solar Receiver-Reactor for Hydrogen Production

Authors: Neises, Martina; Göhring, Felix; Roeb, Martin; Sattler, Christian; Pitz-Paal, Robert;

Simulation of a Solar Receiver-Reactor for Hydrogen Production

Abstract

The transient thermal behavior of two solar receiver-reactors for hydrogen production has been modeled using Modelica/Dymola. The simulated reactors are dedicated to carry out the same chemical reactions but represent two different development stages of the project HYDROSOL and two different orders of magnitude concerning reactor size and hydrogen production capacity. The process itself is a two step thermochemical cycle, which uses mixed iron-oxides as a redox-system. The iron-oxide is coated on a ceramic substrate, which is placed inside the receiver-reactor and serves on the one hand as an absorber for solar radiation and on the other hand as the reaction zone for the chemical reaction. The process consists of a water splitting step in which hydrogen is produced and a regeneration step during which the used redox-material is being reduced. The reactor is operated between these two reaction conditions in regular intervals with alternating temperature levels of about 800 °C for the water splitting step and 1200 °C for the regeneration step. Because of this highly dynamic process and because of fluctuating solar radiation during the day, a mathematical tool was necessary to model the transient behavior of the reactor for theoretical studies. Two models have been developed for two existing receiver-reactors. One model has been set up to simulate the behavior of a small scale test reactor, which has been built and tested at the solar furnace of DLR in Cologne. Results are very promising and show that the model is able to reflect the thermal behavior of the reactor. Another model has been developed for a 100 kWth pilot reactor which was set up at the Plataforma Solar de Almeri´a in Spain. This model is based on the first model but special geometrical features had to be adapted. With this model temperatures and hydrogen production rates could be predicted.

Country
Germany
Related Organizations
Keywords

iron oxide, thermochemical cycle, hydrogen, Dymola

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average