
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part C — Whole-Cycle Model
doi: 10.1115/gt2004-53845
handle: 11567/379784
Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part C — Whole-Cycle Model
A Solid Oxide Fuel Cell-Hybrid System is mainly composed of three parts: the stack, the anodic recirculation system with fuel feeding, and the cathodic side (air side) where turbomachinery and heat exchangers are installed. In Part A of this work the transient models of the fuel cell are described, while in Part B the anodic side is investigated. Many previous studies have been carried out on the cathodic side at the Thermochemical Power Group facility to simulate the transient behavior of the main components such as compressors, expanders and heat exchangers. In this paper attention is focused on the integration of the transient models of the hybrid system components. Following the on and off-design analysis of the SOFC-HS the transient response of the system from an electrochemical, fluid dynamic and thermal point of view has been studied at several operating conditions.
- University of Genoa Italy
- Goa University India
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
