Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Flore (Florence Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://flore.unifi.it/bitstre...
Conference object
Data sources: UnpayWall
https://doi.org/10.1115/gt2005...
Conference object . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical Heat Transfer Analysis of an Innovative Gas Turbine Combustor: Coupled Study of Radiation and Cooling in the Upper Part of the Liner

Authors: FACCHINI, BRUNO; CARCASCI, CARLO; A. ANDREINI; A. BACCI; A. ASTI; E. DEL PUGLIA; G. CECCHERINI; +1 Authors

Numerical Heat Transfer Analysis of an Innovative Gas Turbine Combustor: Coupled Study of Radiation and Cooling in the Upper Part of the Liner

Abstract

A numerical study of a single can combustor for the GE10 heavy-duty gas turbine, which is being developed at GE-Energy (Oil & Gas), is performed using the STAR-CD CFD package. The topic of the present study is the analysis of the cooling system of the combustor liner’s upper part, named “cap”. The study was developed in three steps, using two different computational models. As first model, the flow field and the temperature distribution inside the chamber were determined by meshing the inner part of the liner. As second model, the impingement cooling system of the cold side of the cap was meshed to evaluate heat transfer distribution. For the reactive calculations, a closure of the BML (Bray-Moss-Libby) approach based on Kolmogorov-Petrovskii-Piskunov theorem was used. The model was implemented in the STAR-CD code using its user coding features. Then the radiative thermal load on the liner walls was evaluated by means of the STAR-CD-native Discrete Transfer model. The selection of the radiative properties of the flame was performed using a correlation procedure involving the total emissivity of the gas, the mean beam length and the gas temperature. The estimated heat flux on the cap was finally used as boundary condition for the calculation of the cooling system, consisting of 68 staggered impingement jet lines on the cold side of the cap. The resulting temperature distribution shows a good agreement with the experimental values measured by thermocouples. The results confirm the validity of the implemented procedure, and point out the importance of a full CFD computation as an additional tool to support classic correlation design procedures.

Country
Italy
Keywords

Gas Turbine, Combustor, CFD, Cooling, Radiation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green