Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1115/gt2010...
Conference object . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development and Validation of a Model for Axial Compressor Fouling Simulation

Authors: MELINO, FRANCESCO; PERETTO, ANTONIO; Spina P. R.;

Development and Validation of a Model for Axial Compressor Fouling Simulation

Abstract

Gas turbine axial compressor performance are heavily influenced by blade fouling; as a result, the gas turbines efficiency and producible power output decrease. In this study a model, able to evaluate the performance degradation of an axial compressor due to fouling, is developed and validated. The model is validated against experimental results available in literature and included into a computer code developed by the Authors (IN.FO.G.T.E) which is able to estimate the performance of every commercial gas turbine by using a stage stacking methods for the simulation of compressor behavior. The goal of this study is to show and discuss the change in gas turbine main performance (such as efficiency, power output, compressor inlet mass flow rate, pressure ratio) due to compressor fouling and also highlight and discuss the change in compressor stages performance curves.

Country
Italy
Powered by OpenAIRE graph
Found an issue? Give us feedback