Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gas Path Analysis on KLM In-Flight Engine Data

Authors: Jos P. van Buijtenen; W. P. J. Visser; Michel L. Verbist; Rob Duivis;

Gas Path Analysis on KLM In-Flight Engine Data

Abstract

Gas-path-analysis (GPA) based diagnostic techniques enable health estimation of individual gas turbine components without the need for engine disassembly. Currently, the Gas turbine Simulation Program (GSP) gas path analysis tool is used at KLM Engine Services to assess component conditions of the CF6-50, CF6-80 and CFM56-7B engine families during post-overhaul performance acceptance tests. The engine condition can be much more closely followed if on-wing (i.e., in-flight) performance data are analyzed also. By reducing unnecessary maintenance due to incorrect diagnosis, maintenance costs can be reduced, safety improved and engine availability increased. Gas path analysis of on-wing performance data is different in comparison to gas path analysis with test cell data. Generally fewer performance parameters are recorded on-wing and the available data are more affected by measurement uncertainty including sensor noise, sensor bias and varying operating conditions. Consequently, this reduces the potential and validity of the diagnostic results. In collaboration with KLM Engine Services, the feasibility of gas path analysis with on-wing performance data is assessed. In this paper the results of the feasibility study are presented, together with some applications and case studies of preliminary GPA results with on-wing data.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Average