Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1115/gt2015...
Conference object . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transient Simulations of a T100 Micro Gas Turbine Converted Into a Micro Humid Air Turbine

Authors: Carrero, M. M.; FERRARI, MARIO LUIGI; De Paepe, W.; Parente, A.; Bram, S.; Contino, F.;

Transient Simulations of a T100 Micro Gas Turbine Converted Into a Micro Humid Air Turbine

Abstract

Micro Gas Turbines (mGTs) have arisen as a promising technology for Combined Heat and Power (CHP) thanks to their overall energy efficiencies of 80% (30% electrical + 50% thermal) and the advantages they offer with respect to internal combustion engines. The main limitation of mGTs lies in their rather low electrical efficiency: whenever there is no heat demand, the exhaust gases are directly blown off and the efficiency of the unit is reduced to 30%. Operation in such conditions is generally not economical and can eventually lead to shutdown of the machine. To address this issue, the mGT cycle can be modified so that in moments of low heat demand the heat in the exhaust gases is used to warm up water which is then re-injected in the cycle, thereby increasing the electrical efficiency. The introduction of a saturation tower allows for water injection in mGTs: the resulting cycle is known as a micro Humid Air Turbine (mHAT). The static performance of the mGT Turbec T100 working as an mHAT has been characterised through previous numerical and experimental work at Vrije Universiteit Brussel (VUB). However, the dynamic behaviour of such a complex system is key to protect the components during transient operation. Thus, we have modelled the Turbec T100 mHAT with the TRANSEO tool in order to simulate how the cycle performs when the demanded power output fluctuates. Steady-state results showed that when operating with water injection, the electrical efficiency of the unit is incremented by 3.4% absolute. The transient analysis revealed that power increase ramps higher than 4.2 kW/s or power decrease ramps lower than 3.5 kW/s (absolute value) lead to oscillations which enter the unstable operation region of the compressor. Since power ramps in the controller of the Turbec T100 mGT are limited to 2kW/s, it should be safe to vary the power output of the T100 mHAT when operating with water injection.

Countries
Italy, Belgium
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%