Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1115/gt2017...
Conference object . 2017 . Peer-reviewed
Data sources: Crossref
Journal of Engineering for Gas Turbines and Power
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of Experimental and Numerically Predicted Three-Dimensional Wake Behaviour of a Vertical Axis Wind Turbine

Authors: J. Saverin; G. Persico; D. Marten; D. Holst; G. Pechlivanoglou; C. O. Paschereit; V. Dossena;

Comparison of Experimental and Numerically Predicted Three-Dimensional Wake Behaviour of a Vertical Axis Wind Turbine

Abstract

The evolution of the wake of a wind turbine contributes significantly to its operation and performance, as well as to those of machines installed in the vicinity. The inherent unsteady and three-dimensional aerodynamics of Vertical Axis Wind Turbines (VAWT) have hitherto limited the research on wake evolution. In this paper the wakes of both a troposkien and a H-type VAWT rotor are investigated by comparing experiments and calculations. Experiments were carried out in the large-scale wind tunnel of the Politecnico di Milano, where unsteady velocity measurements in the wake were performed by means of hot wire anemometry. The geometry of the rotors was reconstructed in the open-source wind-turbine software QBlade, developed at the TU Berlin. The aerodynamic model makes use of a lifting line free-vortex wake (LLFVW) formulation, including an adapted Beddoes-Leishman unsteady aerodynamic model; airfoil polars are introduced to assign sectional lift and drag coefficients. A wake sensitivity analysis was carried out to maximize the reliability of wake predictions. The calculations are shown to reproduce several wake features observed in the experiments, including blade-tip vortex, dominant and submissive vortical structures, and periodic unsteadiness caused by sectional dynamic stall. The experimental assessment of the simulations illustrates that the LLFVW model is capable of predicting the unsteady wake development with very limited computational cost, thus making the model ideal for the design and optimization of VAWTs.

Country
Italy
Keywords

Engineering (all)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average