Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Working Fluid on Pulsating Heat Pipe Thermal Performance

Authors: Tsuyoshi Kawanami; Koji Fumoto; Masahiro Kawaji;

Effect of Working Fluid on Pulsating Heat Pipe Thermal Performance

Abstract

Pulsating heat pipes (PHPs) are complex heat transfer devices whose thermal performance is governed by a strong thermohydrodynamic coupling. Recently, PHPs have attracted attention as novel electronic cooling devices. In this study, we used a self-rewetting fluid and obtained new experimental results for the improvement of the heat transport efficiency in PHPs. In contrast to the case of common liquids, the surface tension of self-rewetting fluids increases with temperature. Because of the increase in the surface tension at high temperatures, these fluids tend to flow toward the dry spot appearing on a heated surface, and thus, the boiling heat transfer is improved. We constructed PHPs from multiport extruded aluminum tubes with square channels. The PHPs consisted of a heating section, an adiabatic section, and a condensation section with a heat sink. We investigated the effect of the type of working fluid and the fluid fill ratio on the device performance. The working fluids employed were a self-rewetting fluid, water, and ethanol. The thermophysical properties of the working fluid affected the device performance, which also depended strongly on the boundary conditions employed during the PHP operation. In particular, the use of a self-rewetting fluid in the PHPs helped enhance the heat transport efficiency to a considerable extent.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average