Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1115/iowtc2...
Conference object . 2022 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ASME Open Journal of Engineering
Article . 2023 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-Time Hybrid Testing of a Floating Offshore Wind Turbine Using a Surrogate-Based Aerodynamic Emulator

Authors: Edward J. Ransley; Scott A. Brown; Emma C. Edwards; Tom Tosdevin; Kieran Monk; Alastair M. Reynolds; Deborah Greaves; +1 Authors

Real-Time Hybrid Testing of a Floating Offshore Wind Turbine Using a Surrogate-Based Aerodynamic Emulator

Abstract

Abstract Physical modelling of floating offshore wind turbines (FOWTs) is challenging due to the complexities associated with simultaneous application of two different scaling laws, governing the hydrodynamic and aerodynamic loading on the structure. To avoid these issues, this paper presents a real-time hybrid testing strategy in which a feedback-loop, consisting of an on-board fan, and control algorithm, is utilised to emulate the aerodynamic forces acting on the FOWT system. Here, we apply this strategy to a 70th-scale IEA Wind 15MW reference wind turbine mounted on a version of the VolturnUS-S platform. Unlike other similar methods, which directly simulate the aerodynamic loads for the fan’s control using an aerodynamic code running in parallel with the experiment, this example utilises a surrogate model trained on numerical model data calculated in advance. This strategy enables high fidelity numerical model data, or even physical data, to be included in the aerodynamic emulation, by removing the requirement for real-time simulation, and, therefore, potentially enables more accurate loading predictions to be used in the experiments. This paper documents the development of the real-time hybrid testing system in the Coastal Ocean And Sediment Transport (COAST) Laboratory at the University of Plymouth in the U.K., including the hardware, software and instrumentation set-up, and demonstrates the power of the surrogate-based aerodynamic emulator based on numerical data calculated using OpenFAST.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold