Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Double-Walled Reactor Tube With Molten Salt Thermal Storage for Solar Tubular Reformers

Authors: Tsuyoshi Hatamachi; Daisuke Nakano; Tatsuya Kodama; Nobuyuki Gokon; Yuki Isobe;

Double-Walled Reactor Tube With Molten Salt Thermal Storage for Solar Tubular Reformers

Abstract

This paper proposes a novel type of “double-walled” reactor tube with molten-salt thermal storage at high temperatures for use in solar tubular reformers. The prototype reactor tube is demonstrated on the heat-discharge and chemical reaction performances during cooling mode of the reactor tube at laboratory scale. The Na2CO3 composite material with MgO ceramics was filled into the outer annulus of the double-walled reactor tube while the Ru-based catalyst particles were filled into the inner tube. The heat discharge form the molten Na2CO3 circumvented the rapid temperature change of the catalyst bed, which resulted in the alleviation of decrease in chemical conversion during cooling mode of the reactor tube. The application of the new reactor tubes to solar tubular reformers is expected to help realize stable operation of the solar reforming process under fluctuating insolation during a cloud passage.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Average