Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Astronomi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions

Artifact-less coded aperture imaging in the x-ray band with multiple different random patterns

Authors: Satoshi Takashima; Hirokazu Odaka; Hirokazu Odaka; Toru Tamagawa; Yuanhui Zhou; Tomoaki Kasuga; Soichiro Hashiba; +4 Authors

Artifact-less coded aperture imaging in the x-ray band with multiple different random patterns

Abstract

The coded aperture imaging technique is a useful method of X-ray imaging in observational astrophysics. However, the presence of imaging noise or so-called artifacts in a decoded image is a drawback of this method. We propose a new coded aperture imaging method using multiple different random patterns for significantly reducing the image artifacts. This aperture mask contains multiple different patterns each of which generates a different artifact distribution in its decoded image. By summing all decoded images of the different patterns, the artifact distributions are cancelled out, and we obtain a remarkably accurate image. We demonstrate this concept with imaging experiments of a monochromatic 16 keV hard X-ray beam at the synchrotron photon facility SPring-8, using the combination of a CMOS image sensor and an aperture mask that has four different random patterns composed of holes with a diameter of 27 um and a separation of 39 um. The entire imaging system is installed in a 25 cm-long compact size, and achieves an angular resolution of < 30'' (full width at half maximum). In addition, we show by Monte Carlo simulation that the artifacts can be reduced more effectively if the number of different patterns increases to 8 or 16.

20 pages, 8 figures, accepted for publication in JATIS

Keywords

FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average