
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
<title>Optical and mechanical properties of tungsten bronzes: a comparative study of M<formula><inf><roman>x</roman></inf></formula>WO<formula><inf><roman>3</roman></inf></formula> with different ions</title>

doi: 10.1117/12.266835
handle: 11573/387769
The changes that the electrochemical insertion of ions (M equals H, Li or Na) cause in the optical and mechanical properties of electrochromic tungsten bronzes, MxWO3, are reported. The commonly accepted assumption that the electrons and cations have separate effects, namely on the optical properties and film volume (stress), respectively, does not properly describe the results that are obtained with the three different cations. Differences between the cations are explained in terms of cation diffusion in a solid medium. Particular attention is given to the use of the laser beam deflection method, in conjunction with in- situ optical measurements, to characterize electrochromic thin films.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
- Roma Tre University Italy
- University of Rome Tor Vergata Italy
- Sapienza University of Rome Italy
- University of Rome Tor Vergata Italy
ELECTROCHROMISM; tungsten bronzes
ELECTROCHROMISM; tungsten bronzes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
