
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In vivo micro-CT imaging of the murine lung via a computer controlled intermittent iso-pressure breath hold (IIBH) technique

doi: 10.1117/12.651885
In vivo micro-CT imaging of the murine lung via a computer controlled intermittent iso-pressure breath hold (IIBH) technique
Micro-CT, a technique for imaging small objects at high resolution using micro focused x-rays, is becoming widely available for small animal imaging. With the growing number of mouse models of pulmonary pathology, there is great interest in following disease progression and evaluating the alteration in longitudinal studies. Along with the high resolution associated with micro CT comes increased scanning times, and hence minimization of motion artifacts is required. We propose a new technique for imaging mouse lungs in vivo by inducing an intermittent iso-pressure breath hold (IIBH) with a fixed level of positive airway pressure during image acquisition, to decrease motion artifacts and increase image resolution and quality. Mechanical ventilation of the respiratory system for such a setup consists of three phases, 1) tidal breathing (hyperventilated), 2) a breath hold during a fixed level of applied positive airway pressure, 3) periodic deep sighs. Image acquisition is triggered over the stable segment of the IIBH period. Comparison of images acquired from the same mouse lung using three imaging techniques (normal breathing / no gating, normal breathing with gating at End Inspiration (EI) and finally the IIBH technique) demonstrated substantial improvements in resolution and quality when using the IIBH gating. Using IIBH triggering the total image acquisition time increased from 15 minutes to 35 minutes, although total x-ray exposure time and hence animal dosage remains the same. This technique is an important step in providing high quality lung imaging of the mouse in vivo, and will provide a good foundation for future longitudinal studies.
- University of Iowa United States
- Flinders University Australia
- University of Iowa United States
- Flinders University Australia
4 Research products, page 1 of 1
- 2006IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
