
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep Uv And Thermal Hardening Of Novolak Resists

doi: 10.1117/12.940335
The use of deep UV resist hardening for high temperature resist-masked processes is becoming more widespread throughout the semiconductor industry. In this report we present data on the wavelength and thermal dependence of the deep UV crosslinking process in novolak resin obtained through dissolution studies and SEM micrographs. An excimer laser was used to provide light of differing wavelengths. The results indicate that longer wavelengths near 308 nm promote crosslinking throughout the 1.5 micron thick resin, while shorter wavelengths induce crosslinking to limited depths. Heating of the wafer during the deep UV exposure is shown to greatly accelerate the crosslinking process, compared to a sequential expose and bake process. SEM micrographs of various stages of hardening in resist are shown. The resist hardening process employed by one commercial system is discussed in terms of the findings of this study.
- Texas Instruments (United States) United States
- Texas Instruments (United States) United States
- University of New Mexico United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
