
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Joint-Specific Power-Pedaling Rate Relationships During Maximal Cycling

pmid: 24610335
Previous authors have reported power-pedaling rate relationships for maximal cycling. However, the joint-specific power-pedaling rate relationships that contribute to pedal power have not been reported. We determined absolute and relative contributions of joint-specific powers to pedal power across a range of pedaling rates during maximal cycling. Ten cyclists performed maximal 3 s cycling trials at 60, 90, 120, 150, and 180 rpm. Joint-specific powers were averaged over complete pedal cycles, and extension and flexion actions. Effects of pedaling rate on relative joint-specific power, velocity, and excursion were assessed with regression analyses and repeated-measures ANOVA. Relative ankle plantar flexion power (25 to 8%; P = .01; R2 = .90) decreased with increasing pedaling rate, whereas relative hip extension power (41 to 59%; P < .01; R2 = .92) and knee flexion power (34 to 49%; P < .01; R2 = .94) increased with increasing pedaling rate. Knee extension powers did not differ across pedaling rates. Ankle joint angular excursion decreased with increasing pedaling rate (48 to 20 deg) whereas hip joint excursion increased (42 to 48 deg). These results demonstrate that the often-reported quadratic power-pedaling rate relationship arises from combined effects of dissimilar joint-specific power-pedaling rate relationships. These dissimilar relationships are likely influenced by musculoskeletal constraints (ie, muscle architecture, morphology) and/or motor control strategies.
- University of Maine United States
- University of Maine United States
- University of Utah United States
- University System of Ohio United States
- Kent State University, East Liverpool United States
Adult, Male, Knee Joint, Physical Exertion, Models, Biological, Joint power, Bicycling, Cycle ergometry, Energy Transfer, Torque, Musculoskeletal, Task Performance and Analysis, Physical Endurance, Muscle, Humans, Biomechanics, Computer Simulation, Hip Joint, Ankle Joint
Adult, Male, Knee Joint, Physical Exertion, Models, Biological, Joint power, Bicycling, Cycle ergometry, Energy Transfer, Torque, Musculoskeletal, Task Performance and Analysis, Physical Endurance, Muscle, Humans, Biomechanics, Computer Simulation, Hip Joint, Ankle Joint
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
