Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ mSpherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mSphere
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mSphere
Article . 2025
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mSphere
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pangenomes suggest ecological-evolutionary responses to experimental soil warming

Authors: Mallory J. Choudoir; Achala Narayanan; Damayanti Rodriguez-Ramos; Rachel Simoes; Alon Efroni; Abigail Sondrini; Kristen M. DeAngelis;

Pangenomes suggest ecological-evolutionary responses to experimental soil warming

Abstract

ABSTRACT Below-ground carbon transformations that contribute to healthy soils represent a natural climate change mitigation, but newly acquired traits adaptive to climate stress may alter microbial feedback mechanisms. To better define microbial evolutionary responses to long-term climate warming, we study microorganisms from an ongoing in situ soil warming experiment where, for over three decades, temperate forest soils are continuously heated at 5°C above ambient. We hypothesize that across generations of chronic warming, genomic signatures within diverse bacterial lineages reflect adaptations related to growth and carbon utilization. From our bacterial culture collection isolated from experimental heated and control plots, we sequenced genomes representing dominant taxa sensitive to warming, including lineages of Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. We investigated genomic attributes and functional gene content to identify signatures of adaptation. Comparative pangenomics revealed accessory gene clusters related to central metabolism, competition, and carbon substrate degradation, with few functional annotations explicitly associated with long-term warming. Trends in functional gene patterns suggest genomes from heated plots were relatively enriched in central carbohydrate and nitrogen metabolism pathways, while genomes from control plots were relatively enriched in amino acid and fatty acid metabolism pathways. We observed that genomes from heated plots had less codon bias, suggesting potential adaptive traits related to growth or growth efficiency. Codon usage bias varied for organisms with similar 16S rrn operon copy number, suggesting that these organisms experience different selective pressures on growth efficiency. Our work suggests the emergence of lineage-specific trends as well as common ecological-evolutionary microbial responses to climate change. IMPORTANCE Anthropogenic climate change threatens soil ecosystem health in part by altering below-ground carbon cycling carried out by microbes. Microbial evolutionary responses are often overshadowed by community-level ecological responses, but adaptive responses represent potential changes in traits and functional potential that may alter ecosystem function. We predict that microbes are adapting to climate change stressors like soil warming. To test this, we analyzed the genomes of bacteria from a soil warming experiment where soil plots have been experimentally heated 5°C above ambient for over 30 years. While genomic attributes were unchanged by long-term warming, we observed trends in functional gene content related to carbon and nitrogen usage and genomic indicators of growth efficiency. These responses may represent new parameters in how soil ecosystems feedback to the climate system.

Keywords

pangenome, Bacteria, Climate Change, adaptation, Microbiology, Global Warming, QR1-502, Carbon, soil, Soil, climate change, traits, CAZyme, Soil Microbiology, Genome, Bacterial, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold