Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thermal Engineeringarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Thermal Engineering
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Managing the equipment service life in rendering engineering support to NPP operation

Authors: S. I. Ryasnyy;

Managing the equipment service life in rendering engineering support to NPP operation

Abstract

Apart from subjecting metal to nondestructive testing and determining its actual state, which are the traditional methods used for managing the service life of NPP equipment during its operation, other approaches closely linked with rendering engineering support to NPP operation have emerged in recent decades, which, however, have been covered in publications to a lesser extent. Service life management matters occupy the central place in the structure of engineering support measures. Application of the concept of repairing NPP equipment based on assessing its technical state and the risk of its failure makes it possible to achieve significantly smaller costs for maintenance and repairs and produce a larger amount of electricity due to shorter planned outages. Decreasing the occurrence probability of a process-related abnormality through its prediction is a further development of techniques for monitoring the technical state of equipment and systems. The proposed and implemented procedure for predicting the occurrence of process-related deviations from normal NPP operation opens the possibility to record in the online mode the trends in changes of process parameters that are likely to lead to malfunctions in equipment operation and to reduce the probability of power unit unloading when an abnormal technical state of equipment occurs and develops by recording changes in the state at an early stage and taking timely corrective measures. The article presents the structure of interconnections between the objectives and conditions of adjustment and commissioning tests, in which the management of equipment service life (saving and optimizing the service life) occupies the central place. Special attention is paid to differences in resource saving and optimization measures.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average