
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Boiler startup under conditions of convective heating of the highly reactive coal dust

Experimental research of conditions and characteristics of ignition of the pulverized coal (with a particle size of approximately 80 μm) of different-type brown coals (1B, 2B, and 3B) during convective heating by a heated airflow (at a temperature of 425–600°С and velocity of 1–5 m/s) is carried out. The use of low-inertia thermocouples, a high-speed video camera, and dedicated software has made it possible to determine the minimum oxidizer parameters needed for coal dust ignition, and the approximation dependences of a main characteristic of the process under study―ignition delay time―on the air temperature. Results of experimental studies provide a basis for developing an optimal scheme of the boiler startup without heavy oil, which differs from the known schemes by the relatively low energy consumption for fuel-burning initiation. By example of the BKZ 75-39FB boiler, the economic usefulness of applying the boiler startup without heavy oil is shown. This scheme can be implemented using the proposed ignition burner that functions as a part of the direct system of pulverized-fuel preparation.
- Tomsk Polytechnic University Russian Federation
- Tomsk Polytechnic University Russian Federation
- Siberian Federal University Russian Federation
- Siberian Federal University Russian Federation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
