
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Stability analysis of Cu–H2O nanofluid over a curved stretching–shrinking sheet: existence of dual solutions

The effect of mass suction with temperature jump and velocity slip of viscous, unsteady nanofluid flow past a curved shrinking–stretching surface is analyzed in this work. Copper (Cu) and water are considered nanoparticles and base fluids, respectively. The complicated coupled system of differential equations is converted into non-dimensional form with some suitable similarity variables. The solution of the nonlinear problem is produced by use of numerical scheme available in the form of bvp4c package in MATLAB. In the case of shrinking towards the surface, a reverse flow situation is also developed and requires careful selection of solution by examining the stability of the solution. Detailed stability analysis is done and critical values are determined for the possible existence of dual solutions. Variation in parameters is analyzed by plotting graphs and tables. The numerical values are also calculated for the reduced Nusselt number and skin friction due to variation in values of different flow parameters. Results have shown that for the curved shrinking surfaces, one should expect multiple solutions for a set of parameter values such as mass suction, curvature, nanoparticles volume fraction, and unsteadiness.
- Quaid-i-Azam University Pakistan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
