Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ENEA Open Archivearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The European Physical Journal Plus
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic algorithm for multilayer shield optimization with a custom parallel computing architecture

Authors: Cordella F.; Cappelli M.; Ciotti M.; Claps G.; De Leo V.; Mazzotta C.; Pacella D.; +2 Authors

Genetic algorithm for multilayer shield optimization with a custom parallel computing architecture

Abstract

AbstractThis paper introduces a novel architecture for optimizing radiation shielding using a genetic algorithm with dynamic penalties and a custom parallel computing architecture. A practical example focuses on minimizing the Total Ionizing Dose for a silicon slab, considering only the layer number and the total thickness (additional constraints, e.g., cost and density, can be easily added). Genetic algorithm coupled with Geant4 simulations in a custom parallel computing architecture demonstrates convergence for the Total Ionizing Dose values. To address genetic algorithm issues (premature convergence, not perfectly fitted search parameters), a Total Ionizing Dose Database Vault object was introduced to enhance search speed (data persistence) and to preserve all solutions’ details independently. The Total Ionizing Dose Database Vault analysis highlights boron carbide as the best material for the first layer for neutron shielding and high-Z material (e.g., Tungsten) for the last layers to stop secondary gammas. A validation point between Geant4 and MCNP was conducted for specific simulation conditions. The advantages of the custom parallel computing architecture introduced here, are discussed in terms of resilience, scalability, autonomy, flexibility, and efficiency, with the benefit of saving computational time. The proposed genetic algorithm-based approach optimizes radiation shielding materials and configurations efficiently benefiting space exploration, medical devices, nuclear facilities, radioactive sources, and radiogenic devices.

Country
Italy
Keywords

genetic algorithm; radiation shielding; multilayer shield design; total ionizing dose; optimization; parallel computing architecture; Monte Carlo simulation; Geant4; MCNP; neutron shielding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid