Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Philosophical Transa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Philosophical Transactions of the Royal Society B Biological Sciences
Article . 1999 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
https://doi.org/10.1142/978184...
Part of book or chapter of book . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interesting times on Krakatau: stand dynamics in the 1990s

Authors: Stephen H. Jones; Tukirin Partomihardjo; Robert J. Whittaker;

Interesting times on Krakatau: stand dynamics in the 1990s

Abstract

The Krakatau Islands, Indonesia, have provided an opportunity for ecologists to track primary succession from the ‘clean slate’ of 1883, through forest closure in the 1920s, to the contemporary period, in which successional changes take the form of alterations in composition and stature of forest stands rather than gross changes in ecosystem type. This paper reports on permanent forest plots established on the islands in 1989, and fully surveyed again in both 1992 and 1997. Since 1989, the plots have been subject to natural disturbance phenomena in the form of varying combinations of, for example, deposition of volcanic ejecta, landslides, lightning strikes, storm damage and drought. These effects have been concentrated between 1992 and 1997, during which the volcano Anak Krakatau has deposited ash on the islands of Sertung and Panjang, but not on Rakata. Data on stand responses are presented for growth rates (dbh (diameter at breast height, 1.3 m) increment), stem recruitment and mortality, biomass changes (partitioned into mortality, ingrowth and growth of established trees), and compositional shifts. The discussion focuses on evaluation of questions and successional models framed earlier in the programme. One general finding is that the stand dominants as of 1989 have tended to decline in number within the plots, generally through low levels of recruitment failing to balance rates of mortality. The effects of disturbance to the plots appear to be evident in terms of mortality and recruitment, dbh increment, and changes in biomass. The patterns of change in the eight plots are quite varied, such that relatively few generalizations are possible. The difficulties of establishing meaningful baseline rates for tree growth and stand biomass are discussed.

Related Organizations
Keywords

Disasters, Time Factors, Species Specificity, Indonesia, Biomass, Volcanic Eruptions, Ecosystem, Trees

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Average
bronze
Related to Research communities
Energy Research