
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy-efficient workflow distribution
Pervasive computing and business process modeling are increasingly joining forces, as mobile human users shall be seamlessly integrated into business processes. In respective scenarios, humans use mobile devices and wireless technology to interact with workflows running in a powerful back-end infrastructure. However, the frequent interaction between humans and workflows causes a high communication overhead and, thus, high energy consumption on mobile devices. This impacts the usability and efficiency of the business process due to rapidly drained batteries and the resulting short life-times of the devices and applications. We present an approach based on a minimum-cut algorithm for reducing costly data transmissions during workflow execution by distributing parts of a workflow to the users' devices. Our motivation is to reduce the energy consumption on the mobile devices and, thus, avoid draining batteries in the field. We prove that our algorithm finds the optimal solution for a given network and workflow, decreasing the energy consumed on mobile devices by 32-37% compared to an approach where the entire workflow is executed in the infrastructure. Thus, in typical domains like logistics and health care, one third of the energy can be saved. This either means that devices have to be charged less frequently, leading to less distraction in the business process, or that mobile device specifications can be lowered. Significant cost reductions result in both cases.
- Università degli studi di Salerno Italy
- University of Stuttgart Germany
Energy efficiency, Minimum Cut, Distributed Systems (CR C.2.4), Information Systems Applications (CR H.4), Workflow distribution
Energy efficiency, Minimum Cut, Distributed Systems (CR C.2.4), Information Systems Applications (CR H.4), Workflow distribution
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
