
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Epsilon-Lexicase Selection for Regression
Lexicase selection is a parent selection method that considers test cases separately, rather than in aggregate, when performing parent selection. It performs well in discrete error spaces but not on the continuous-valued problems that compose most system identification tasks. In this paper, we develop a new form of lexicase selection for symbolic regression, named epsilon-lexicase selection, that redefines the pass condition for individuals on each test case in a more effective way. We run a series of experiments on real-world and synthetic problems with several treatments of epsilon and quantify how epsilon affects parent selection and model performance. epsilon-lexicase selection is shown to be effective for regression, producing better fit models compared to other techniques such as tournament selection and age-fitness Pareto optimization. We demonstrate that epsilon can be adapted automatically for individual test cases based on the population performance distribution. Our experiments show that epsilon-lexicase selection with automatic epsilon produces the most accurate models across tested problems with negligible computational overhead. We show that behavioral diversity is exceptionally high in lexicase selection treatments, and that epsilon-lexicase selection makes use of more fitness cases when selecting parents than lexicase selection, which helps explain the performance improvement.
9 pages, 9 figures. Presented at GECCO '16. Includes correction
- University of Illinois at Urbana Champaign United States
- University of Massachusetts Amherst United States
- University of Massachusetts System United States
- University of Massachusetts System United States
- Hampshire College United States
FOS: Computer and information sciences, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
FOS: Computer and information sciences, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).106 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
