
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Intelligent network topology based post-pandemic reintroduction policies for offices
COVID-19 has touched almost all facets of modern life. As part of this global shift, many employers have recommended employees work from home in an effort to curb the spread of infection. When organizations bring workers back to the office, the specific policies for personnel reintroduction will shape both productivity and the spread of disease. This study explores the secondary social and energy impacts of potential reintroduction policies. Using a socio-organizational network inferred from an office in Redwood City, California, we define social, epidemic resistance, and energy metrics which are used to compare the character of personnel reintroduction plans. Our notable findings are, first, that the choice of which occupants return has a large effect on modeled network-level epidemic resistance. Second, where the occupants are located can significantly impact overlap in space-use within smaller spatial zones - a concept related to social distancing. In summary, this work is a critical first step in demonstrating the value of intelligent occupant network topology based reintroduction schemes in offices that can minimize: disease spread, socio-organizational disruptions and building energy use impacts.
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
- Stanford University United States
Energy Analysis, Socio-Spatial Resistance Optimization, Eigenvalue Decomposition
Energy Analysis, Socio-Spatial Resistance Optimization, Eigenvalue Decomposition
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
