Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade do Minh...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/368799...
Conference object . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trading Runtime for Energy Efficiency: Leveraging Power Caps to Save Energy across Programming Languages

Authors: Simão Cunha; Luís Silva; João Saraiva; João Paulo Fernandes;

Trading Runtime for Energy Efficiency: Leveraging Power Caps to Save Energy across Programming Languages

Abstract

Energy efficiency of software is crucial in minimizing environmental impact and reducing operational costs of ICT systems. Energy efficiency is therefore a key area of contemporary software language engineering research. A recurrent discussion that excites our community is whether runtime performance is always a proxy for energy efficiency. While a generalized intuition seems to suggest this is the case, this intuition does not align with the fact that energy is the accumulation of power over time; hence, time is only one of the factors in this accumulation. We focus on the other factor, power, and the impact that capping it has on the energy efficiency of running software. We conduct an extensive investigation comparing regular and power-capped executions of 9 benchmark programs obtained from The Computer Language Benchmarks Game, across 20 distinct programming languages. Our results show that employing power caps can be used to trade running time, which is degraded, for energy efficiency, which is improved, in all the programming languages and in all benchmarks that were considered. We observe overall energy savings of almost 14% across the 20 programming languages, with notable savings of 27% in Haskell. This saving, however, comes at the cost of an overall increase of the program’s execution time of 91% in average. We are also able to draw similar observations using language specific benchmarks for programming languages of different paradigms and with different execution models. This is achieved analyzing a wide range of benchmark programs from the nofib Benchmark Suite of Haskell Programs DaCapo Benchmark Suite for Java, and the Python Performance Benchmark Suite. We observe energy savings of approximately 8% to 21% across the test suites, with execution time increases ranging from 21% to 46%. Notably, the DaCapo suite exhibits the most significant values, with 20.84% energy savings and a 45.58% increase in execution time. Our results have the potential to drive significant energy savings in the context of computational tasks for which runtime is not critical, including Batch Processing Systems, Background Data Processing and Automated Backups.

This work is financed by national funds through Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020, DOI 10.54499-/UIDB/50014/2020, and by COST Action 19135: "CERCIRAS- Connecting Education and Research Communities for an Innovative Resource Aware Society".

Country
Portugal
Related Organizations
Keywords

Power cap, Energy efficiency, Green software, Programming languages, Language benchmarking

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research