Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.17170/ko...
Other literature type . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fantastic Circuits and Where to Find Them—A Holistic ILP Formulation for Model-Based Hardware Design

Authors: Nicolai Fiege; Peter Zipf;

Fantastic Circuits and Where to Find Them—A Holistic ILP Formulation for Model-Based Hardware Design

Abstract

The end of Moore’s law and Dennard scaling emphasizes the need for application-specific computing architectures to achieve high resource and energy efficiency and real-time performance. The concept of a silicon compiler remains an enduring aspiration for design time reduction. In order to generate hardware implementations at register transfer level from behavioral descriptions, design automation tools must address challenging and interdependent problems, including allocation, scheduling, and binding. Additionally, manual intervention by the user is necessary to balance the resources vs. performance tradeoff via, for example, function inlining or loop unrolling/pipelining. Existing approaches typically solve these problems sequentially, compromising optimality in favor of simplicity and runtime. Here we show how to model the whole model-based design flow as one holistic integer linear programming (ILP) formulation aiming at consistently deriving the optimal microarchitecture for any given application. Incorporating clock gating minimizes the number of useless operations with negligible resource overhead (if any), while always guaranteeing optimal throughput. The unified nature of the proposed ILP model enables implementations unmatched by state-of-the-art approaches in terms of resource efficiency and measured power consumption. These results facilitate a streamlined design flow for highly optimized embedded systems in the context of model-based design.

Related Organizations
Keywords

electronic design automation, Softwarewerkzeug, optimisation, Rekonfiguration, hardware compiler, Compiler, Optimierung, reconfigurable systems, 600, Entwurfsautomation, Energieeffizienz, 004, Hardware, Designwissenschaft, design tools, energy efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average