
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells

doi: 10.1149/1.1345868
The in situ resistance of Nafion membranes with different thickness was measured in one-dimensional fuel cells as a function of current density. Except for the thin Nation I 12 membrane, an increase of the ionic resistance with current density (in the range 0 to I A/cm 2 ) was found. The thicker the membrane, the stronger the increase in the same current density interval. The resistance distribution across the thickness of membranes was determined by using membranes composed from several thin sheets with interlying thin gold wires as potential probes. It was found that the increase of the resistance is always confined to the membrane sheet contacting the anode electrode. These measurements, combined with the results from experiments with membranes of different water content, lead to the conclusion that the resistance increase at the anode side is due to the insufficient compensation of the electro-osmotic drag by the hack transport of water to the anode. Based on a solution diffusion mechanism of the water motion in the membrane, the experimental results may he explained by a mechanism whereby the electro-osmotic drag coefficient is independent of the local membrane hydration and the water diffusion coefficient D H2O , is a strong function of the local membrane water content. The experimental data would, qualitatively, also he in line with a model proposing hack transport of water to the anode by convection of water in the submicropores of the membrane.
- Paul Scherrer Institute Switzerland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).196 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
