
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Sealing of Porous Low-k Dielectrics
Ellipsometric porosimetry study of UV-O-3 oxidized SiOxCy films

Authors: Petra Rudolf; Jean-Jacques Pireaux; Alessandra Satta; Quoc Toan Le; Francesca Cecchet; Caroline Whelan; Karen Maex;
Abstract
The ongoing evolution from SiO 2 to insulator materials with lower dielectric constant, k, through the introduction of pores, brings new challenges in terms of processing and reliability. Porosity enhances penetration of undesired chemical species. A method of sealing microporous low-k dielectric chemical vapor deposited silicon oxycarbide films using UV-ozone induced oxidation has been investigated. The film thickness, refractive index, porosity, pore size, and sealing as a function of exposure time have been characterized by ellipsometry. The films are sealed without modification of the underlying porosity, an essential first step in integrating porous materials.
Related Organizations
- KU Leuven Belgium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
23
Average
Top 10%
Top 10%
bronze
Fields of Science (3) View all
Related to Research communities
Energy Research