Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Planar and Self-Breathing Fuel Cells for Use in Electronic Devices

Authors: Christoph Ziegler; Ed Fontes; Jürgen Schumacher; Marco Tranitz; Andreas Schmitz;

Modeling Planar and Self-Breathing Fuel Cells for Use in Electronic Devices

Abstract

A theoretical study of a planar and self-breathing fuel cell is presented. This work contains the development of a mathematical model for planar self-breathing fuel cells, the validation of the model, and a study of the behavior of this type of fuel cell. The mathematical model presented is two-dimensional and nonisothermal. The validation of the model is performed by comparison of the measured overall performance of a planar self-breathing fuel cell to the predictions of the model. For this type of cell, the maximum power density is in the range between 0.5 and 0.4 V, so the model is applied to study the behavior of the reference cell at a cell voltage of 0.4 V. The results of this study show the gas distribution, the potential distribution, and the temperature distribution are influenced strongly by the geometric design of the cathode end plate. The charge generation rate in the active area of the cathode and anode is affected by the ribs of the cathode end plate. A strong nonuniformity of the current distribution in the cathode is found. © 2004 The Electrochemical Society. All rights reserved.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%