Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrochemical Investigation of Nickel Pattern Electrodes in H[sub 2]/H[sub 2]O and CO/CO[sub 2] Atmospheres

Authors: Kion Norrman; Mark Linne; Lars Montelius; Mariusz Graczyk; Jens Valdemar Thorvald Høgh; Mogens Bjerg Mogensen; Andreas Ehn;

Electrochemical Investigation of Nickel Pattern Electrodes in H[sub 2]/H[sub 2]O and CO/CO[sub 2] Atmospheres

Abstract

In this study, nickel pattern electrodes were electrochemically investigated in a three-electrode setup, operating both with H-2/H2O and CO/CO2 atmospheres. Heating introduced structural differences in the nickel layer among the pattern electrodes, which appear to affect the electrode performance. Both dense and porous nickel pattern electrodes were formed by heating. Holes appeared in the nickel layer of the porous pattern electrodes, where the open cavity triple phase boundaries exhibited different limiting processes than open triple phase boundary electrodes of the dense electrode. As the temperature was raised in the experiment, the electrodes stabilized, with a degraded behavior that seemed to be strongly coupled to the structural changes in the electrode. It was possible to compare literature results with high temperature impedance measurements in H-2/H2O presented here, while new results at lower temperatures in H-2/H2O are also presented. Impedance spectroscopy measurements were performed, and the gas dependence of the polarization resistance was observed as the mixture ratios and temperatures were varied in both atmospheres. A positive relation between the polarization resistance and the partial pressure of CO was determined for the dense nickel pattern electrode, which agrees with previous results using nickel point electrodes. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3484091] All rights reserved. (Less)

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Top 10%