
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mitigated Start-Up of PEMFC in Real Automotive Conditions: Local Experimental Investigation and Development of a New Accelerated Stress Test Protocol

handle: 11311/1177724
Mitigated Start-Up of PEMFC in Real Automotive Conditions: Local Experimental Investigation and Development of a New Accelerated Stress Test Protocol
This study combines local electrochemical diagnostics with ex situ analysis to investigate degradation mechanism associated to start-up/shut-down (SU/SD) of PEMFC and mitigation strategies adopted in automotive stacks. Local degradation resulting from repeated SU/SD was analyzed with and without mitigation strategies by means of a macro-segmented cell setup provided with Reference Hydrogen Electrodes (RHEs) at both anode and cathode to measure local electrodes potential and current. Accelerated Stress Test (AST) for start-up with and without mitigation strategies are proposed and validated. A ten-fold acceleration of performance loss due to un-mitigated SU/SD has been calculated with respect to AST for catalyst support. Under mitigated SU/SD, instead, a strong degradation was observed as localized at cathode inlet region (i.e. −38% ECSA loss and −22 mV voltage loss after 200 cycles) due to local potentials transient reaching up to 1.5 V vs RHE. These localized stress conditions were additionally reproduced in a zero-gradient and a new AST protocol (named start-up AST) was proposed to mimic the potential profile observed upon SU/SD cycling. Representativeness of the start-up AST for real world degradation was confirmed up to 200 cycles. Platinum dissolution and diffusion/precipitation within the polymer electrolyte was shown to be the dominant mechanism affecting performance loss.
- University of Grenoble France
- German Aerospace Center Germany
- University of Grenoble France
- Grenoble Alpes University France
- Polytechnic University of Milan Italy
Fuel Cell, PEMFC, Durability, Start-Stop
Fuel Cell, PEMFC, Durability, Start-Stop
8 Research products, page 1 of 1
- 2014IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
