
Found an issue? Give us feedback
Journal of The Electrochemical Society
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Near-Zero Volume Expansion Nanoporous Silicon as Anode for Li-ion Batteries

Authors: Fabio Maroni; Marco Spreafico; Axel Schönecker; Margret Wohlfahrt-Mehrens; Mario Marinaro;
Abstract
In this work, novel near-zero volume expanding Si-dominant electrodes are presented as promising anodes for next-generation Li-ion batteries. The electrodes contain micrometer-size nano-porous Silicon particles with a carefully tuned morphology and synthesized via a scalable and cost-effective route. Volume expansion during electrochemical Li-Si alloying/de-alloying is found to be almost completely suppressed. Bi-layer pouch cells manufactured with the abovementioned Si-anodes, having industrial relevant areal capacities (≥3 mAh cm−2), and LiNi0.6Mn0.2Co0.2O2 cathodes, show indeed negligible volume expansion as demonstrated by operando dilatometric measurements during galvanostatic cycling and post-mortem SEM cross-sectional analysis.
Related Organizations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
8
Top 10%
Average
Top 10%
hybrid