Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of The Elect...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of The Electrochemical Society
Article . 2022 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Redox-Mediated and Microwave-Assisted Thiol Activation: Two Approaches to Unsymmetrical Disulfides Synthesis

Authors: Daria A. Burmistrova; Andrey Galustyan; Ivan V. Smolyaninov; Nadezhda T. Berberova;

Redox-Mediated and Microwave-Assisted Thiol Activation: Two Approaches to Unsymmetrical Disulfides Synthesis

Abstract

Two approaches to synthesis of unsymmetrical disulfides based on different types of thiol activation, namely, an electrochemical method in the presence of a redox mediator and a microwave irradiation, were discussed. The mediated electrosynthesis procedures were carried out by the oxidative coupling of thiols or by the thiol-disulfide exchange in the presence of redox pairs—substituted o-aminophenol/o-iminobenzoquinone. It has been established that the formation of unsymmetrical disulfides under electrochemical conditions occurs as a result of both the oxidative coupling of sulfur-centered radicals, and a redox-mediator promoted thiol-disulfide exchange, which led to a high yield of heterodimeric products (89%–99%). The microwave-assisted synthesis made it possible to obtain the target products with yields of 13%–86% depending on different irradiation parameters such as power, temperature, and irradiation duration. However, this method requires a rigorous selection of conditions for each reaction and is therefore inferior to the electrochemical approach.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average