Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of The Elect...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of The Electrochemical Society
Article . 2023 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a Non-Enzymatic Vitamin-C Electrochemical Sensor Based on rGO/Ce2(SO4)3Hierarchical Nanocomposite

Authors: Anil Subash S.; Manjunatha C.; Sudeep M.; Chandresh Kumar Rastogi; Vishal Chaudhary; Girish Kumar S.; Praveen Sekhar;

Development of a Non-Enzymatic Vitamin-C Electrochemical Sensor Based on rGO/Ce2(SO4)3Hierarchical Nanocomposite

Abstract

The engineering of high-performance functional nanomaterials for efficient monitoring of Vitamin-C/Ascorbic Acid (AA) is highly desirable in the food, chemical, cosmetics, and pharmaceutical industries. In this regard, this report presents the engineering of novel cerous sulfate Ce2(SO4)3nanoflowers, decorated reduced graphene oxide (rGO) through an economic, energy-efficient and rapid one-pot hydrothermal strategy for electrochemical detection of AA. The obtained nanocomposite demonstrates the successful formation of nano Ce2(SO4)3with flower morphology having large surface area and potential to promote the electrolyte accessibility as well as electronic transmission during sensing phenomenon. The Ce2(SO4)3/rGO (CSG) nanoflower composite was drop casted on screen printed carbon electrode (SPCE) and tested for its electrochemical detection of AA. At +0.337 V, a well-defined oxidation peak of AA occurred in phosphate buffer solution of pH 7. A linear response of the CSG electrode was further obtained under optimum conditions, for the AA concentration range of 10 − 1000μM with a sensitivity of 0.2973μAμM−1cm−2and lowest detection limit of 900μM. The excellent Vitamin-C sensing ability of CSG is attributed to the synergistic effect from the dimensional anisotropy of flower-like morphological features of Ce2(SO4)3as well as the interfacial structure. The CSG was also tested for vitamin C tablets, VeeCee-Z, to validate its commercial applicability. Furthermore, fabricated electrochemical sensor exhibited significant reproducibility (98.63%) and optimum stability. Thus, the significant findings of this work are believed to hold the prospect for sensitive and prompt determination of Vitamin-C in the industrial domains.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%