
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of an Inhomogeneous Distribution

The conductive additive and binder domain (CBD) is an essential component of lithium-ion battery electrodes. It enhances the electrical connectivity and mechanical stability within the solid electrode matrix. Migration of the binder during electrode drying can lead to an inhomogeneous distribution of the CBD, impeding transport of lithium ions into the electrodes, and diminishing the electronic pathways between solid particles and the current collector. This is especially prominent in thick electrodes at high drying rates. Therefore, we investigate the effect of a non-uniform CBD distribution on the electrochemical performance of NMC622 electrodes via microstructure-resolved three-dimensional (3D) simulations on virtual electrodes, based on tomographic image data, and compare them with experimental results. The valuable information derived by combining microstructure-resolved models with electrochemical impedance spectroscopy measurements on symmetric cells under blocking electrolyte conditions is used to characterize the lithium-ion transport in the electrode pore space, including the contributions of the CBD. The effect of this inhomogeneity on electrode performance is then gauged via galvanostatic discharge simulations under changing discharge currents and for varying electrode densities. Through our work, we demonstrate the significance of the CBD distribution and enable predictive simulations for future battery design.
high-frequency symmetric cell response, carbon-binder domain (CBD), CBD distribution in NMC622 thick cathodes, Electrochemical Energy Storage, 3D microstructure-resolved simulations
high-frequency symmetric cell response, carbon-binder domain (CBD), CBD distribution in NMC622 thick cathodes, Electrochemical Energy Storage, 3D microstructure-resolved simulations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
