Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of The Elect...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of The Electrochemical Society
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HZB Repository
Article . 2024
Data sources: HZB Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of an Inhomogeneous Distribution

Authors: Mrudula Prasad; Simon Hein; Timo Danner; Benedikt Prifling; Rares Scurtu; Alice Hoffmann; André Hilger; +5 Authors

Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of an Inhomogeneous Distribution

Abstract

The conductive additive and binder domain (CBD) is an essential component of lithium-ion battery electrodes. It enhances the electrical connectivity and mechanical stability within the solid electrode matrix. Migration of the binder during electrode drying can lead to an inhomogeneous distribution of the CBD, impeding transport of lithium ions into the electrodes, and diminishing the electronic pathways between solid particles and the current collector. This is especially prominent in thick electrodes at high drying rates. Therefore, we investigate the effect of a non-uniform CBD distribution on the electrochemical performance of NMC622 electrodes via microstructure-resolved three-dimensional (3D) simulations on virtual electrodes, based on tomographic image data, and compare them with experimental results. The valuable information derived by combining microstructure-resolved models with electrochemical impedance spectroscopy measurements on symmetric cells under blocking electrolyte conditions is used to characterize the lithium-ion transport in the electrode pore space, including the contributions of the CBD. The effect of this inhomogeneity on electrode performance is then gauged via galvanostatic discharge simulations under changing discharge currents and for varying electrode densities. Through our work, we demonstrate the significance of the CBD distribution and enable predictive simulations for future battery design.

Country
Germany
Keywords

high-frequency symmetric cell response, carbon-binder domain (CBD), CBD distribution in NMC622 thick cathodes, Electrochemical Energy Storage, 3D microstructure-resolved simulations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research