
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport

doi: 10.1149/2.0241813jes
Numerous technologies, such as batteries and fuel cells, depend on electrochemical kinetics. In some cases, the responsible electrochemistry and charged-species transport is complex. However, to date, there are essentially no general-purpose modeling capabilities that facilitate the incorporation of thermodynamic, kinetic, and transport complexities into the simulation of electrochemical processes. A vast majority of the modeling literature uses only a few (often only one) global charge-transfer reactions, with the rates expressed using Butler–Volmer approximations. The objective of the present paper is to identify common aspects of electrochemistry, seeking a foundational basis for designing and implementing software with general applicability across a wide range of materials sets and applications. The development of new technologies should be accelerated and improved by enabling the incorporation of electrochemical complexity (e.g., multi-step, elementary charge-transfer reactions and as well as supporting ionic and electronic transport) into the analysis and interpretation of scientific results. The spirit of the approach is analogous to the role that Chemkin has played in homogeneous chemistry modeling, especially combustion. The Cantera software, which already has some electrochemistry capabilities, forms the foundation for future capabilities expansion.
- National Renewable Energy Laboratory United States
- Colorado School of Mines United States
- National Renewable Energy Laboratory United States
- Offenburg University Germany
- Offenburg University Germany
540
540
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
