
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part I. Physical Model

Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part I. Physical Model
An isothermal porous-electrode model of a discharging lead-acid battery is presented, which includes an extension of concentrated-solution theory that accounts for excluded-volume effects, local pressure variation, and a detailed microscopic water balance. The approach accounts for three typically neglected physical phenomena: convection, pressure diffusion, and variation of liquid volume with state of charge. Rescaling of the governing equations uncovers a set of fundamental dimensionless parameters that control the battery's response. Total volume change during discharge and nonuniform pressure prove to be higher-order effects in cells where variations occur in just one spatial dimension. A numerical solution is developed and exploited to predict transient cell voltages and internal concentration profiles in response to a range of C-rates. The dependence of discharge capacity on C-rate deviates substantially from Peukert's simple power law: charge capacity is concentration-limited at low C-rates, and voltage-limited at high C-rates. The model is fit to experimental data, showing good agreement.
Submitted to Journal of the Electrochemical Society. First part of a two-part paper. Part II: "Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: II. Asymptotic Analysis"
- THE FARADAY INSTITUTION
- University of Oxford United Kingdom
- University of Oxford United Kingdom
- The Faraday Institution
- The Faraday Institution
Chemical Physics (physics.chem-ph), batteries, lead-acid modeling, batteries, lead acid, Physics - Chemical Physics, FOS: Physical sciences, concentrated-solution, electrochemical engineering
Chemical Physics (physics.chem-ph), batteries, lead-acid modeling, batteries, lead acid, Physics - Chemical Physics, FOS: Physical sciences, concentrated-solution, electrochemical engineering
1 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
