Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ECS Meeting Abstract...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ECS Transactions
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ECS Meeting Abstracts
Article . 2014 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ECS Transactions
Article . 2014 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
Journal of The Electrochemical Society
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selective Formation of Rare Earth-Nickel Alloys via Electrochemical Reactions in NaCl-KCl Molten Salt

Authors: Yasuda, Kouji; Kondo, Katsuya; Kobayashi, Seitaro; Nohira, Toshiyuki; Hagiwara, Rika;

Selective Formation of Rare Earth-Nickel Alloys via Electrochemical Reactions in NaCl-KCl Molten Salt

Abstract

Rare earth (RE) metals have several superior characters such as electric, magnetic, and fluorescence properties and are therefore indispensable as industrial materials throughout the world. Among the many applications of RE metals, the use of neodymium–iron–boron (Nd–Fe–B) magnets—the so-called neodymium permanent magnets—has been remarkably increasing recently. Because the properties of praseodymium (Pr) and Nd are similar, they are found in nature in the same ores and their separation is difficult. Thus, in some applications including permanent magnets, a Nd–Pr alloy called didymium (Di) is sometimes utilized. On the other hand, Nd–Fe–B magnets have the drawback of a relatively low Curie temperature of ~583 K. In order to maintain its superior coercive force even at high temperatures (above 473 K), where high-performance motors in EVs and HEVs operate, dysprosium (Dy) is necessary as an additive. One of the concerns pertaining to RE magnets is the uneven distribution of RE resources. While the present RE production capacity satisfies the demand and their price has lowered, there remains the potential for RE shortage in the future. On the basis of these supply circumstances, it can be concluded that the recycling or waste management of Nd–Fe–B magnet scraps is currently an urgent task. We have proposed a new separation and recovery process for RE metals from magnet scraps using molten salts and an alloy diaphragm as shown in the figure [1]. According to our previous studies, a specific RE element can be alloyed and de-alloyed rapidly with iron-group (IG) metals in molten salts by using electrochemical methods. In the proposed process, Nd, Dy, and Pr are separated because of differences in both the formation potentials and formation rates of the RE–IG alloys used as the diaphragm. In this study, selective formation of RE–Ni was investigated in molten NaCl–KCl–RECl3at 973 K. Based on our previous studies [2-4], the effective potential range for the separation of Dy from Pr and Nd is expected to be between 0.39 V and 0.48 V vs. Na+/Na. In this potential range, the thermodynamically stable phases are PrNi3, NdNi3, and DyNi2. Since the formation of DyNi2 is considerably faster than that of PrNi3 and NdNi3, it is expected that the formation of DyNi2 would proceed preferentially to those of NdNi3 and PrNi3. Then, the electrochemical formation of RE–Ni alloys were carried out at 0.42 V for 60 min in NaCl–KCl–0.50mol%RECl3. The thickness of the formed alloy layer was 4 µm for Nd-Ni, 2 µm for Pr-Ni, and 50 µm for Dy-Ni. These results suggest that Dy-Ni alloy is selectively formed in the melt containing both of NdCl3, DyCl3, and PrCl3. The sample was prepared by potentiostatic electrolysis at 0.42 V for 60 min in NaCl–KCl–0.50mol%NdCl3–0.50mol%DyCl3–0.50mol%PrCl3. The sample was analyzed by cross-sectional SEM and EDX. The formed alloy layer has a thickness around 60 µm with a composition of Nd:Dy:Pr = 1.3:29.8:0.7 at%. The high composition ratio, x Dy / (x Nd + x Pr), corresponding to 14.9 clearly indicates that Dy-Ni alloy can be selectively produced at this potential, and that RE-Ni alloy can be utilized as an alloy diaphragm with high separation ability for the proposed process. The results at different potentials are discussed in the presentation. References [1] T. Oishi, H. Konishi, T. Nohira, M. Tanaka, and T. Usui, Kagaku Kogaku Ronbunshu, 36, 299 (2010) (in Japanese). [2] K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochim. Acta, 92, 349 (2013). [3] K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochim. Acta, 106, 293 (2013). [4] K. Yasuda, K. Kondo, T. Nohira, and R. Hagiwara, J. Electroch em Soc., submitted.

Country
Japan
Related Organizations
Keywords

Rare earth, Molten salt, NaCl-KCl, Recycling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average