Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Photoenergy
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Photoenergy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/f8...
Other literature type . 2012
Data sources: Datacite
https://dx.doi.org/10.60692/s3...
Other literature type . 2012
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10%Efficiency by Design Optimization

خلية شمسية أحادية الوصلة من السيليكون غير متبلور ذات طبقة رقيقة تتجاوز كفاءتها 10 ٪ من خلال تحسين التصميم
Authors: Mohammed Ikbal Kabir; S.A. Shahahmadi; Victor Lim; Saleem H. Zaidi; Kamaruzzaman Sopian; Nowshad Amin;

Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10%Efficiency by Design Optimization

Abstract

L'efficacité de conversion d'une cellule solaire peut être sensiblement augmentée par des propriétés de matériau améliorées et des conceptions associées. Dans un premier temps, cette étude a adopté la technique de simulation AMPS-1D (analyse des structures microélectroniques et photoniques) pour concevoir et optimiser les paramètres de la cellule avant la fabrication, où les paramètres de conception optimaux peuvent être validés. Les cellules solaires à jonction unique à base de silicium amorphe hydrogéné (a-Si :H) ont été analysées à l'aide du simulateur AMPS-1D. L'enquête a été effectuée sur la base de paramètres de modèle importants tels que l'épaisseur, les concentrations de dopage, la bande interdite et la température de fonctionnement, etc. L'efficacité de la jonction unique a-Si :H peut être atteinte jusqu'à plus de 19 % après optimisation paramétrique dans la simulation, ce qui peut sembler irréaliste avec les technologies actuellement disponibles. Par conséquent, les cellules solaires a-SiC :H/a-SiC : H-buffer/a-Si : H/a-Si :H conçues et optimisées numériquement ont été fabriquées en utilisant le PECVD (dépôt chimique en phase vapeur assisté par plasma), où la meilleure efficacité de conversion initiale de 10,02 % a été atteinte ( V, mA/cm2 et ) pour une cellule de petite surface (0,086 cm2). La caractéristique d'efficacité quantique (QE) montre la meilleure réponse spectrale de la cellule dans la gamme de longueurs d'onde de 400 nm à 650 nm, ce qui prouve qu'elle est un candidat potentiel en tant que cellule moyenne dans les structures multijonctions à base de a-Si.

La eficiencia de conversión de una célula solar se puede aumentar sustancialmente mediante la mejora de las propiedades del material y los diseños asociados. Al principio, este estudio ha adoptado la técnica de simulación AMPS-1D (análisis de estructuras microelectrónicas y fotónicas) para diseñar y optimizar los parámetros de la celda antes de la fabricación, donde se pueden validar los parámetros de diseño óptimos. Se han analizado células solares de unión única basadas en silicio amorfo hidrogenado (a-Si:H) utilizando el simulador AMPS-1D. La investigación se ha realizado en función de parámetros importantes del modelo, como el espesor, las concentraciones de dopaje, la banda prohibida y la temperatura de funcionamiento, etc. La eficiencia de la unión simple a-Si:H se puede lograr hasta más del 19% después de la optimización paramétrica en la simulación, lo que puede parecer poco realista con las tecnologías disponibles actualmente. Por lo tanto, las células solares a-SiC:H/a-SiC: H-buffer/a-Si:H/a-Si:H diseñadas y optimizadas numéricamente se han fabricado utilizando PECVD (deposición química de vapor mejorada con plasma), donde se ha logrado la mejor eficiencia de conversión inicial de 10.02% ( V, mA/cm2 y ) para una célula de área pequeña (0.086 cm2). La característica de eficiencia cuántica (QE) muestra la mejor respuesta espectral de la célula en el rango de longitud de onda de 400 nm–650 nm, lo que demuestra que es un candidato potencial como célula media en estructuras multiunión basadas en a-Si.

The conversion efficiency of a solar cell can substantially be increased by improved material properties and associated designs. At first, this study has adopted AMPS-1D (analysis of microelectronic and photonic structures) simulation technique to design and optimize the cell parameters prior to fabrication, where the optimum design parameters can be validated. Solar cells of single junction based on hydrogenated amorphous silicon (a-Si:H) have been analyzed by using AMPS-1D simulator. The investigation has been made based on important model parameters such as thickness, doping concentrations, bandgap, and operating temperature and so forth. The efficiency of single junction a-Si:H can be achieved as high as over 19% after parametric optimization in the simulation, which might seem unrealistic with presently available technologies. Therefore, the numerically designed and optimized a-SiC:H/a-SiC:H-buffer/a-Si:H/a-Si:H solar cells have been fabricated by using PECVD (plasma-enhanced chemical vapor deposition), where the best initial conversion efficiency of 10.02% has been achieved ( V, mA/cm2 and ) for a small area cell (0.086 cm2). The quantum efficiency (QE) characteristic shows the cell’s better spectral response in the wavelength range of 400 nm–650 nm, which proves it to be a potential candidate as the middle cell in a-Si-based multijunction structures.

يمكن زيادة كفاءة تحويل الخلية الشمسية بشكل كبير من خلال تحسين خصائص المواد والتصاميم المرتبطة بها. في البداية، اعتمدت هذه الدراسة تقنية محاكاة AMPS -1D (تحليل الهياكل الإلكترونية الدقيقة والفوتونية) لتصميم وتحسين معلمات الخلية قبل التصنيع، حيث يمكن التحقق من معلمات التصميم المثلى. تم تحليل الخلايا الشمسية ذات الوصلة الواحدة القائمة على السيليكون غير المتبلور المهدرج (a - Si:H) باستخدام محاكي AMPS -1D. تم إجراء التحقيق بناءً على معلمات النموذج المهمة مثل السُمك وتركيزات المنشطات والفجوة النطاقية ودرجة حرارة التشغيل وما إلى ذلك. يمكن تحقيق كفاءة الوصلة المفردة a - Si:H بنسبة تزيد عن 19 ٪ بعد التحسين البارامتري في المحاكاة، والذي قد يبدو غير واقعي مع التقنيات المتاحة حاليًا. لذلك، تم تصنيع الخلايا الشمسية a - SiC:H/a - SiC:H - buffer/a - Si:H/a - Si: H المصممة والمحسنة عدديًا باستخدام PECVD (ترسيب البخار الكيميائي المحسن بالبلازما)، حيث تم تحقيق أفضل كفاءة تحويل أولية بنسبة 10.02 ٪ ( V، mA/cm2 و ) لخلية صغيرة المساحة (0.086 سم2). تُظهر خاصية الكفاءة الكمية (QE) استجابة طيفية أفضل للخلية في نطاق الطول الموجي 400 نانومتر - 650 نانومتر، مما يثبت أنها مرشحة محتملة كخلية وسطى في الهياكل متعددة الوصلات القائمة على a - Si.

Keywords

Alternative medicine, Surface Recombination, Materials Science, TJ807-830, Efficiency, Porous Silicon, Renewable energy sources, Fabrication, Engineering, Microelectronics, Amorphous Oxide Semiconductors, Plasmonics for Photovoltaic Devices, FOS: Electrical engineering, electronic engineering, information engineering, Materials Chemistry, Pathology, Chemical vapor deposition, Electrical and Electronic Engineering, Optoelectronics, Amorphous solid, Crystallography, Plasma-enhanced chemical vapor deposition, Solar cell, Porous Silicon Nanoparticles and Nanostructures, Amorphous silicon, Materials science, Solar Cells, Silicon Solar Cell Technology, Chemistry, Physical Sciences, Energy conversion efficiency, Medicine, Crystalline silicon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Energy Research