Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ISRN Renewable Energ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ISRN Renewable Energy
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ISRN Renewable Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Solar Energy Transfer through Roof Material in Africa Sub-Saharan Regions

Authors: A. Emmanuel Lawin; Brice Sinsin; Clément Ahouannou; Julien Adounkpe; Rufin Offin Lié Akiyo;

Modeling Solar Energy Transfer through Roof Material in Africa Sub-Saharan Regions

Abstract

As a result of the global warming, the atmospheric temperature in sub-Saharan regions of Africa may drastically increase, thus worsening the poor living conditions already experienced by people in those regions. Roof’s thermal insulation capacity may play key role in reducing indoor thermal comfort cost. In the present study, effort is put to model heat transfer through roofs in south Saharan regions. Validation of the model was achieved using the slightly sloppy galvanized aluminum-iron sheet roof. Atmospheric data were hourly measured during April and June in Ouagadougou, Burkina Faso. Solar energy values increase from 24.50±0.50 W/m2 in the morning to a maximum of 900.1±0.8 W/m2 in the early afternoon. Ambient temperature follows the same trend as solar radiation with a maximum at 40.0±0.2°C. Wind speed varies from 0.5 to 4.0±0.1 m/s. The measured roof inner wall temperatures agreed excellently with the developed model with a Nash-Sutcliffe Coefficient of Efficiency of 0.988. Energy flux entering the room through the roof varies from 63.1±0.3 W/m2 earlier in the morning to a maximum of 115.3±0.5 W/m2 in the earlier afternoon. These results shall help to better design human habitat under changing climate conditions in the sub-Saharan regions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold