
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Automatic Finger Interruption Detection in Electroluminescence Images of Multicrystalline Solar Cells

doi: 10.1155/2015/879675
This study provides an automatic method for detecting finger interruptions in electroluminescence (EL) images of multicrystalline solar cells. The proposed method is a supervised classification method. We obtain regions of interest (ROI) by separating theELimage to several regions. The fingers within eachROIare candidates for defect detection. We horizontally scan eachROIregion and extract features from each finger pixel. In the training stage, we record a set of features which are extracted from interrupted fingers and noninterrupted fingers. These features are represented as points in a spectral embedding space produced by spectral clustering method. These points will be classified into two clusters: interrupted fingers and noninterrupted fingers. In the classification stage, we firstly detect the position of fingers in anELimage and obtain features from each finger. The set of features in each finger combined with known features in the training stage will be represented as points in the spectral embedding space and then will be classified to the cluster with nearer cluster centroid of known features. Experimental results show that the proposed method can effectively detect finger interruptions on a set ofELimages of various solar cells.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
