Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Chemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemistry
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemistry
Article . 2017
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/9f...
Other literature type . 2017
Data sources: Datacite
https://dx.doi.org/10.60692/bg...
Other literature type . 2017
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Active Razor Shell CaO Catalyst Synthesis for Jatropha Methyl Ester Production via Optimized Two-Step Transesterification

تخليق محفز CaO لشفرة الحلاقة النشطة لإنتاج استرات ميثيل الجاتروفا عن طريق التحويل المحسن على خطوتين
Authors: A. N. R. Reddy; A. A. Saleh; Md. Saiful Islam; Sinin Hamdan;

Active Razor Shell CaO Catalyst Synthesis for Jatropha Methyl Ester Production via Optimized Two-Step Transesterification

Abstract

Calcium based catalysts have been studied as promising heterogeneous catalysts for production of methyl esters via transesterification; however a few were explored on catalyst synthesis with high surface area, less particle size, and Ca leaching analysis. In this work, an active Razor shell CaO with crystalline size of 87.2 nm, SBET of 92.63 m2/g, pore diameters of 37.311 nm, and pore volume of 0.613 cc/g was synthesized by a green technique “calcination-hydro aeration-dehydration.” Spectrographic techniques TGA/DTA, FTIR, SEM, XRD, BET&BJH, and PSA were employed for characterization and surface morphology of CaO. Two-step transesterification of Jatropha curcas oil was performed to evaluate CaO catalytic activity. A five-factor-five-level, two-block, half factorial, central composite design based response surface method was employed for experimental analysis and optimization of Jatropha methyl ester (JME) yield. The regression model adequacy ascertained thru coefficient of determination (R2: 95.81%). A JME yield of 98.80% was noted at C (3.10 wt.%), M (54.24 mol./mol.%), T (127.87 min), H (51.31°C), and R (612 rpm). The amount of Ca leached to JME during 1st and 4th reuse cycles was 1.43 ppm ± 0.11 and 4.25 ppm ± 0.21, respectively. Higher leaching of Ca, 6.67 ppm ± 1.09, was found from the 5th reuse cycle due to higher dispersion of Ca2+; consequently JME yield reduces to 76.40%. The JME fuel properties were studied according to biodiesel standards EN 14214 and comply to use as green biodiesel.

Country
Malaysia
Keywords

Desulfurization Technologies for Fuels, Heterogeneous Catalysts, Technical Aspects of Biodiesel Production, Mechanical Engineering, Biomedical Engineering, FOS: Mechanical engineering, Organic chemistry, TJ Mechanical engineering and machinery, TS Manufactures, FOS: Medical engineering, Catalysis, Chemistry, Engineering, Transesterification, Tribological Properties of Lubricants and Additives, Physical Sciences, QD1-999, Catalytic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
gold