Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Chemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemistry
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemistry
Article . 2017
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/2x...
Other literature type . 2017
Data sources: Datacite
https://dx.doi.org/10.60692/b7...
Other literature type . 2017
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Esterification of Microwave Pyrolytic Oil from Palm Oil Kernel Shell

استرة الزيت المحلل حراريًا بالموجات الدقيقة من غلاف نواة زيت النخيل
Authors: Sharifah Mona Abdul Aziz; Rafeah Wahi; Zainab Ngaini; Sinin Hamdan; Syamila Aimi Yahaya;

Esterification of Microwave Pyrolytic Oil from Palm Oil Kernel Shell

Abstract

Microwave pyrolysis is a potential for producing alternative fuel from biomass, such as palm kernel shell (PKS). However, the resulting microwave pyrolytic oil (bio-oil) was highly acidic and has low calorific value and therefore must undergo additional process to improve the physicochemical properties. In this study, attempt was made to improve the pH and calorific value of bio-oil produced from PKS via esterification process. The effect of esterification with ethanol in the presence of sulphuric acid as a catalyst on selected biodiesel qualities was also investigated. The esterification process has successfully improved the pH value from 3.37 to 5.09–5.12 and the calorific value was increased from 27.19 to 34.78–41.52 MJ/kg. Conclusively, the EO has comparatively better properties in terms of its smell, pH, calorific value, and absence of environmentally undesirable compounds. However, future works should include ASTM 6751 specifications tests for biodiesel to evaluate the bio-oil’s suitability for commercial use.

Country
Malaysia
Keywords

Biomass (ecology), Desulfurization Technologies for Fuels, Palm kernel, Pulp and paper industry, Technical Aspects of Biodiesel Production, Biomedical Engineering, FOS: Mechanical engineering, Bio-oil, Organic chemistry, Combustion, FOS: Medical engineering, Biochemistry, Quantum mechanics, Catalysis, Food science, Engineering, Biofuel, Pyrolytic carbon, Palm kernel oil, QD1-999, Acid value, Waste management, Biology, 660, Mechanical Engineering, Physics, Biomass Pyrolysis and Conversion Technologies, Palm oil, QD Chemistry, Agronomy, Chemistry, Heat of combustion, Microwave heating, Physical Sciences, Ultra-clean fuels, Bio-oils upgrading, Biodiesel, Waste Cooking Oil, Microwave, Pyrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold