Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geofluidsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geofluids
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geofluids
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geofluids
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2019
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

A Methodology for Assessing the Favourability of Geopressured-Geothermal Systems in Sedimentary Basin Plays: A Case Study in Abruzzo (Italy)

Authors: orcid bw Alessandro Santilano;
Alessandro Santilano
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Alessandro Santilano in OpenAIRE
orcid Eugenio Trumpy;
Eugenio Trumpy
ORCID
Harvested from ORCID Public Data File

Eugenio Trumpy in OpenAIRE
Gianluca Gola; orcid Assunta Donato;
Assunta Donato
ORCID
Harvested from ORCID Public Data File

Assunta Donato in OpenAIRE
orcid Davide Scrocca;
Davide Scrocca
ORCID
Harvested from ORCID Public Data File

Davide Scrocca in OpenAIRE
orcid Federica Ferrarini;
Federica Ferrarini
ORCID
Harvested from ORCID Public Data File

Federica Ferrarini in OpenAIRE
Francesco Brozzetti; +3 Authors

A Methodology for Assessing the Favourability of Geopressured-Geothermal Systems in Sedimentary Basin Plays: A Case Study in Abruzzo (Italy)

Abstract

We exploit the concept of the geothermal favourability, widely used for hydrothermal and EGS systems, to present an innovative methodology for assessing geopressured-geothermal resources occurring in terrigenous units in sedimentary basin plays. Geopressured-geothermal systems are an unconventional resource for power trigeneration exploiting three forms of energy from hydrocarbons, hydrothermal fluids, and well-head overpressure. This paper is intended to be a practical analytical framework for the systematic integration of the relevant data required to assess geopressured-geothermal resources. For this purpose, innovative parameters were also implemented in the methodology. The final result is the favourability map for identifying prospective areas to be further investigated for the appraisal of the geopressured-geothermal potential. We applied our methodology to the foredeep-foreland domains of the Apennines thrust belt in the Abruzzo region (central Italy). We analysed hundreds of deep hydrocarbon wells in order to create 3D geological and thermo-fluid dynamic models at a regional scale as well as to obtain information on the pressure regimes and on the chemistry of the system. The final favourability map for the Abruzzo case study is a first attempt at ranking these kinds of unconventional geothermal resources in a region that has been historically explored and exploited mostly for hydrocarbons.

Country
Italy
Keywords

QE1-996.5, Abruzzo foredeep, Geology, geothermal energy, unconventional, geopressured resources, geothermal favourability

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold