
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Perspective of CIGS-BIPV’s Product Competitiveness in China

doi: 10.1155/2020/5392594
Copper indium gallium selenide (CIGS) thin-film battery has high photoelectric conversion efficiency, better spectral dispersion ability, and weak light-adsorption characteristics, as well as shape and size flexibility. CIGS-BIPV (building integrated photovoltaic) has attracted more and more research attention with the advantages of good curvature, form and color diversity, and broad application prospects. This paper uses the classical “Porter’s Five Forces Model” to make a preliminary analysis of the competitiveness of CIGS-BIPV products. A more specific competitiveness analysis model is further built with the index modeling method, and the competitiveness of CIGS-BIPV products is thoroughly analyzed from qualitative and quantitative perspectives. Six primary research indicators are used, i.e., safety index, building aesthetics index, economic index, energy-saving and environmental protection index, innovation index, and sales force index. The weight analysis of index modeling shows that compared with a glass curtain wall, exterior stone, and silica-based BIPV, CIGS-BIPV is characterized by high product competitiveness, acceptable cost, attractive appearance, environmental benignity, high technical quality, and certain economic benefits. The product competitiveness of CIGS-BIPV could be further enhanced through the construction and promotion of sales channels.
- Seoul National University Korea (Republic of)
- Wuhan University China (People's Republic of)
- Wuhan University China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
TJ807-830, Renewable energy sources
TJ807-830, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
