Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Photoenergy
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Photoenergy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/26...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/4h...
Other literature type . 2022
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Tin Oxide/Black Paint Coating on Absorber Plate Temperature for Improved Solar Still Production: A Controlled Indoor and Outdoor Investigation

تأثير طلاء أكسيد القصدير/الطلاء الأسود على درجة حرارة لوحة الامتصاص لتحسين الإنتاج الثابت للطاقة الشمسية: تحقيق داخلي وخارجي خاضع للرقابة
Authors: Sayfar Rasachak; Rana Sami Ullah Khan; Laveet Kumar; Taiba Zahid; Usman Ghafoor; Jeyraj Selvaraj; Rehena Nasrin; +1 Authors

Effect of Tin Oxide/Black Paint Coating on Absorber Plate Temperature for Improved Solar Still Production: A Controlled Indoor and Outdoor Investigation

Abstract

The ever-increasing water stress and availability of fresh drinking water are becoming a major challenge in rural and urban communities. The current high-end and large-scale technologies are becoming way more expensive and not friendly to the environment. In this regard, solar still is becoming a prominent and promising future technology due to its environment-friendly nature, less maintenance and operational costs, and simple design. The technological challenge regarding solar still is its low distillate yield. In this study, an attempt has been made to investigate the effect of tin oxide (SnO2) on the absorption surface of solar still towards improvement in sunlight absorption, which would lead to high distillate production rates. Various concentrations of SnO2, i.e., 0.5wt%, 1 wt%, 3 wt%, 5 wt%, 7 wt%, 10 wt%, 15 wt%, and 20 wt%, have been mixed in black and applied on the absorber plate to further optimize the suitable concentration. The experiments have been performed in both indoor (simulated) and outdoor conditions. An increase in surface temperature of absorber plate has been observed with increasing concentration of SnO2 under both the indoor and outdoor conditions, which is due to high solar spectrum absorption properties of SnO2 in the ultraviolet (UV) and near to far-infrared (IR) regions. The highest surface temperature of 101.61°C has been observed for specimens containing 15 wt% SnO2 in black paint under indoor conditions at 1000W/m2 irradiation levels, which is 53.67% higher compared to bare aluminum plate and 16.91% higher compared to only black paint coated aluminum plate. On the other hand, the maximum temperature of 74.96°C has been recorded for the identical specimens containing 15 wt% SnO2 under uncontrolled outdoor conditions. The recorded temperature is 47.96% higher than the bare aluminum plate and 14.88% higher than the black paint-coated aluminum plate. The difference of maximum temperatures under indoor and outdoor conditions is due to uncontrolled outdoor conditions and convective losses.

Keywords

Composite material, TJ807-830, FOS: Mechanical engineering, Renewable energy sources, Environmental science, Coating, Layer (electronics), Engineering, Solar Chimney Systems, Solar Energy Use in Industries, Solar Desalination, Energy, Renewable Energy, Sustainability and the Environment, Mechanical Engineering, Physics, Optics, Indium tin oxide, Materials science, Absorption (acoustics), Tin, Physical Sciences, Metallurgy, Solar Thermal Energy Technologies, Sunlight, Solar-Powered Water Desalination Technologies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
gold