Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Transa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Transactions on Electrical Energy Systems
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation and Comparison of Different Methods for Improving Fault Ride-Through Capability in Grid-Tied Permanent Magnet Synchronous Wind Generators

Authors: Mohamed Metwally Mahmoud; Basiony S. Atia; Yahia M. Esmail; Mohit Bajaj; Daniel Eutyche Mbadjoun Wapet; Mohamed Khalid Ratib; Md. Biplob Hossain; +2 Authors

Evaluation and Comparison of Different Methods for Improving Fault Ride-Through Capability in Grid-Tied Permanent Magnet Synchronous Wind Generators

Abstract

Several advantages make wind-driven permanent magnet synchronous generators (PMSGs) very promising in the wind energy market, especially their fault ride-through capabilities. With the high penetration levels of today, both the grid and wind power (WP) systems are being affected by each other. Due to grid faults, the DC-bus in PMSG systems typically experiences overvoltage, which can negatively affect the generator parameters and trip the system. However, advancements in power electronics, control systems, fault limiters, FACTS, and energy storage technology make it possible to find and design satisfactory solutions and approaches. The most recent FRTC-improving techniques are mainly modified or external techniques based on controllers in PMSG-based WP. This paper evaluates the in-depth schemes of FRTC, introducing the underlying theory and traits of the different approaches to highlight the advantages and drawbacks of each. Five scenarios of DC-link voltage under zero-grid voltage are carried out by using the MATLAB SIMULINK program to assess the FRTC methods. This study shows that external device-based approaches can be efficient, but some of them are expensive, thus updated controller methods are recommended to cut costs. Research findings of this study are expected to support the deployment of FRTC technologies, as well as provide valuable input into WP research on grid integration.

Country
Australia
Keywords

600, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold